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Abstract 20 

We previously reported a household secondary attack rate (SAR) for SARS-CoV-2 of 18.9% through 21 

June 17, 2021. To examine how emerging variants and increased vaccination have affected transmission 22 

rates, we searched PubMed from June 18, 2021, through January 7, 2022. Meta-analyses used generalized 23 

linear mixed models to obtain SAR estimates and 95%CI, disaggregated by several covariates. SARs 24 

were used to estimate vaccine effectiveness based on the transmission probability for susceptibility 25 

(���,�), infectiousness (���,�), and total vaccine effectiveness (���,�). Household SAR for 27 studies 26 

with midpoints in 2021 was 35.8% (95%CI, 30.6%-41.3%), compared to 15.7% (95%CI, 13.3%-18.4%) 27 

for 62 studies with midpoints through April 2020. Household SARs were 38.0% (95%CI, 36.0%-40.0%), 28 

30.8% (95%CI, 23.5%-39.3%), and 22.5% (95%CI, 18.6%-26.8%) for Alpha, Delta, and Beta, 29 

respectively. ���,�, ���,�, and ���,� were 56.6% (95%CI, 28.7%-73.6%), 70.3% (95%CI, 59.3%-30 

78.4%), and 86.8% (95%CI, 76.7%-92.5%) for full vaccination, and 27.5% (95%CI, -6.4%-50.7%), 31 

43.9% (95%CI, 21.8%-59.7%), and 59.9% (95%CI, 34.4%-75.5%) for partial vaccination, respectively. 32 

Household contacts exposed to Alpha or Delta are at increased risk of infection compared to the original 33 

wild-type strain. Vaccination reduced susceptibility to infection and transmission to others.  34 
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Introduction 35 

A previous systematic review and meta-analysis of household transmission of SARS-CoV-2 36 

published through June 17, 2021 reported an overall secondary attack rate (SAR) of 18.9% (95% CI, 37 

16.2%-22.0%) [1]. Emerging variants of concern and increased vaccination have affected transmission 38 

rates. Delta (B.1.617.2) became the predominant variant in many parts of the world and Omicron 39 

(B.1.1.529) poses additional challenges given its high level of spike mutations and increased potential for 40 

transmissibility [2, 3]. Other variants of concern include Alpha (B.1.1.7), Beta (B.1.351), and Gamma 41 

(P.1). 42 

Vaccine efficacies against symptomatic disease and death have been demonstrated in randomized 43 

controlled trials [4] and vaccine effectiveness has been corroborated in large observational studies in 44 

Denmark [5], Israel [6], and the United Kingdom [7]. Household studies can supplement efficacy trials to 45 

determine vaccine effectiveness. Vaccine studies based on secondary attack rates (SARs) can be used to 46 

estimate the protective effectiveness of a vaccine in vaccinated susceptible contacts compared to 47 

unvaccinated susceptible contacts who are exposed to an infected index case (���,�) [8, 9]. Household 48 

studies also enable estimation of vaccine effectiveness in reducing infectiousness (���,�) by comparing 49 

SARs from vaccinated and from unvaccinated index cases to household contacts, which was done for 50 

pertussis [10]. Total vaccine effectiveness (���,�), or the combined effect of direct vaccine protection and 51 

indirect vaccine effectiveness, can also be estimated. It is unknown how effective the SARS-CoV-2 52 

vaccines are in reducing susceptibility and infectiousness in the confines of the household where there is 53 

prolonged close contact between household members and index cases. Here, we aggregate evidence of 54 

household contact tracing studies to evaluate SARs for variants of concern and by index case or contact 55 

vaccination status.  56 

 57 

Methods 58 
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This study followed the Preferred Reporting Items for Systematic Reviews and Meta-analyses 59 

(PRISMA) reporting guideline using the same definitions and eligibility criteria as our original study [11]. 60 

Our last review identified studies published through June 17, 2018 [1]. Herein, we searched PubMed and 61 

reference lists of eligible studies between June 18, 2021, and January 7, 2022, with no restrictions on 62 

language, study design, or place of publication. Search terms were: "SARS-CoV-2", "COVID-19", 63 

"severe acute respiratory syndrome", "SARS", "SARS-CoV", "coronavirus", "variant", "vaccination", 64 

“immunization", "secondary attack rate", "secondary infection rate", "household", "family contacts", 65 

"close contacts", "index case", "contact transmission", "contact attack rate", and "family transmission" 66 

(S1 Table). Pre-prints were included. Citations were managed in EndNote 20 (Thomson Reuters, Toronto, 67 

CA). 68 

Articles with original data that reported at least 2 of the following factors were included: number 69 

of infected household contacts, total number of household contacts, and household secondary attack rates. 70 

Studies that reported infection prevalence, included populations that overlapped with another included 71 

study, and tested contacts using antibody tests only or using antibody tests and another test but did not 72 

disaggregate SARs by test were excluded. We first screened studies by titles and abstracts to identify 73 

potential studies for inclusion. That reviewer then evaluated full-text articles and selected those that met 74 

the inclusion criteria. 75 

For this study, we extracted the following information: first author, location, index case 76 

identification period, number of index cases, index case symptom status, household/family contact type, 77 

test used to diagnose contacts, universal/symptomatic testing, number of tests per contact, and follow-up 78 

duration. We also extracted the number of infected household contacts and total number of household 79 

contacts and disaggregated by covariates including variant, index case vaccination status, household 80 

contact vaccination status, and vaccine type. 81 

To examine temporal patterns, we assessed household SARs by index case identification period 82 

midpoint. We restricted this analysis to laboratory-confirmed infections and SARs from unvaccinated 83 

index cases to unvaccinated household contacts to observe how transmission patterns changed 84 
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independent of vaccination. Next, we evaluated household SARs by variants that were reported in ≥2 85 

studies regardless of vaccination status and restricted to SARs from unvaccinated index cases to 86 

unvaccinated contacts for comparison with SAR estimates from our original analyses of the 87 

predominantly wild-type variant [1, 11]. 88 

Traditionally, vaccine efficacies for reducing susceptibility and infectiousness are estimated as 89 

���,� � 1 � ��	�� ��	��⁄ and  ���,� � 1 � ��	�� ��	��⁄ respectively, where ��	�	  is the SAR 90 

associated with vaccine status � (1=vaccinated, 0=unvaccinated) for the index case and � for the 91 

household contact [8]. The total vaccine effectiveness is defined as ���,� � 1 � �1 � ���,���1 � ���,��. 92 

We examined SARs by index case vaccination status (unvaccinated, partially vaccinated, fully 93 

vaccinated, all) and household contact vaccination status (unvaccinated, partially vaccinated, fully 94 

vaccinated, all). The resultant SARs were used to estimate ���,�, ���,�, and ���,�. We created forest 95 

plots of SARs by index case vaccination status to all household contacts regardless of vaccination status 96 

and restricted to unvaccinated contacts only. We also created forest plots of SARs by contact vaccination 97 

status from all index cases regardless of vaccination status and from unvaccinated index cases only. 98 

Furthermore, we evaluated SARs by vaccine type and vaccination status for index cases and/or household 99 

contacts if reported in ≥2 studies. Finally, we evaluated SARs by variant and vaccination status for index 100 

cases and/or household contacts if reported in ≥2 studies. 101 

 102 

Evaluation of Study Quality and Risk of Bias 103 

To assess study quality and risk of bias, we used the same modified version of the Newcastle-104 

Ottawa quality assessment scale used by Fung et al. and in our first analysis [11, 12]. Studies received up 105 

to 9 points based on participant selection (4 points), study comparability (1 point), and outcome of 106 

interest (4 points). Studies were classified as having high (≤3 points), moderate (4-6 points), and low (≥7 107 

points) risk of bias. When at least 10 studies were available, we also used funnel plots and Begg and 108 

Mazumdar’s rank correlation to evaluate publication bias with significance set at P<0.10 [13]. 109 
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 110 

Statistical Analysis 111 

We used generalized linear mixed-effects models to obtain SAR estimates and 95% CIs. For 112 

comparisons across covariate subgroups (variant, index case vaccination status, household contact 113 

vaccination status, vaccine type), study was treated as a random effect and the covariate as a fixed effect 114 

moderator. For analyses of SARs by index case vaccination status and contact vaccination status, 115 

comparisons between subgroups (e.g., fully vaccinated versus unvaccinated index cases) were restricted 116 

to pairwise analyses (studies in which SARs were reported from both fully vaccinated and unvaccinated 117 

index cases). For vaccine effectiveness measures, we also used generalized linear mixed models to obtain 118 

the logit of the SAR and corresponding sampling variances, which were back-transformed to obtain VE 119 

summary estimates and 95%CIs. Heterogeneity was measured using the I2 statistic, with thresholds of 120 

25%, 50%, and 75% indicating low, moderate, and high heterogeneity, respectively. All analyses were 121 

performed using the metafor package in R software, version 4.1.2 (R Foundation for Statistical 122 

Computing) [14, 15]. Statistical significance was set at a 2-tailed P-value≤0.05.  123 

 124 

Results 125 

We identified 1,291 records (1,281 from PubMed and 10 from reference lists of eligible articles) 126 

published between June 18, 2021 and January 7, 2022 (S1 Figure). Forty-eight new studies [16-64] were 127 

included in this review (S2 Table), 4 of which were preprints in our previous review that were 128 

subsequently published [53-55, 64]. 129 

Forty-nine new studies[16-64] were combined with 77 studies from our previous review [1] for 130 

our analysis of household SAR by study period (5 studies were excluded that did not include laboratory-131 

confirmed infections and 1 that included only asymptomatic index cases), resulting in 126 total studies 132 

representing 1,437,696 contacts from 35 countries (see S3 Table for references). Figure 1 demonstrates 133 

large heterogeneity in SAR over time but estimates with midpoints after July 2020 are generally higher 134 

than the earliest estimates. The household SAR for 27 studies with midpoints in 2021 was 35.8% (95%CI, 135 
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30.6%-41.3%), whereas the household SAR for 62 studies with midpoints through April 2020 was 15.7% 136 

(95%CI, 13.3%-18.4%). Begg and Mazumdar’s rank correlation was statistically significant for studies in 137 

2021 (P=0.001), but not studies through April 2020 (S2 Figure). Excluding one study in 2021 [54] that 138 

had a relatively low SAR improved the funnel plot symmetry and resulted in a SAR of 33.9% (95%CI, 139 

29.4%-38.7%) for studies with midpoints in 2021. When restricting to unvaccinated contacts only, the 140 

household SAR for studies with midpoints in 2021 was 35.4% (95%CI, 30.0%-41.2%). 141 

Eight new studies [23, 28, 31, 39, 50, 52, 55, 56] were combined with 1 study [65] from our 142 

previous review for our analysis of Alpha variant. Figure 2 summarizes results from these 9 studies as 143 

well as 12 [23, 25, 29, 32, 41, 43, 48, 52, 56, 61-63] and 3 [20, 23, 56] new studies reporting household 144 

SARs for Delta and Beta variants, respectively. Estimated mean household SAR for Alpha was 38.0% 145 

(95%CI, 36.0%-40.0%), Delta was 30.8% (95%CI, 23.5%-39.3%), and Beta was 22.5% (95%CI, 18.6%-146 

26.8%) (Figure 2). SARs between Alpha/Delta and Delta/Beta were not significantly different, but Alpha 147 

was significantly higher than Beta (P<0.001). High heterogeneity was found among studies for Delta 148 

(98.0%), and low for Alpha (16.7%) and Beta (2.6%). Begg correlation was not significant for studies of 149 

Delta (S3 Figure). SARs did not significantly change for Alpha (37.8%, 95%CI, 35.7%-39.9%) (5 150 

studies) [23, 28, 31, 50, 55] or Delta (27.0%, 95%CI, 18.5%-37.4%) (7 studies) [23, 29, 32, 43, 48, 61, 151 

62] when restricting to studies with low risk of bias (S4 Table). Restricting to unvaccinated contacts only, 152 

mean estimated SAR for Delta was 34.9% (95%CI, 26.7%-44.1%) (S4 Figure).  153 

Eight studies [24, 26, 34, 39, 43, 48, 54, 62] reported SARs by vaccination status of the index 154 

case to all household contacts regardless of vaccination status, seven of which were at low risk of bias and 155 

one was moderate (Figure 3). Overall estimated mean SAR was 26.6% (95%CI, 18.7%-36.4%) from 156 

unvaccinated (8 studies) [24, 26, 34, 39, 43, 48, 54, 62], 16.2% (95%CI, 8.3%-29.4%) from partially 157 

vaccinated (5 studies) [24, 43, 48, 54, 62], and 14.4% (95% CI: 10.5%-19.4%) from fully vaccinated (7 158 

studies) [24, 26, 34, 39, 43, 48, 62] index cases to household contacts. For 7 paired studies [24, 26, 34, 39, 159 

43, 48, 62], estimated mean SAR from unvaccinated index cases (29.9%; 95%CI, 23.0%-37.7%) was 160 

significantly higher than from fully vaccinated index cases (P<0.001). For 5 paired studies [24, 43, 48, 161 
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54, 62], SARs were not significantly different from unvaccinated index cases (19.7%; 95%CI, 13.9%-162 

27.3%) than from partially vaccinated index cases. Three studies included only Delta infections [43, 48, 163 

62]. Restricting to those 3 studies, we found no significant difference in SAR by index case vaccination 164 

status to all contacts regardless of vaccination status. Excluding those 3 studies, the estimated mean SAR 165 

was significantly higher from unvaccinated index cases (36.3%; 95%CI, 31.3%-41.6%) than from fully 166 

vaccinated index cases (10.7%; 95%CI, 9.0%-12.8%) (P<0.001) (4 paired studies) [24, 26, 34, 39], but 167 

not from partially vaccinated index cases (2 paired studies) [24, 54]. Restricting to unvaccinated 168 

household contacts, SARs were also significantly higher from unvaccinated index cases (30.9%, 95%CI, 169 

23.9%-38.8%) than from fully vaccinated index cases (12.0%, 95%CI, 10.0%-14.2%) (P<0.001) (4 paired 170 

studies) [24, 26, 48, 62], but not from partially vaccinated index cases (3 paired studies) [24, 54, 62] (S5 171 

Figure). SARs were generally lower from fully vaccinated index cases regardless of contact vaccination 172 

status (S6 Figure). Direct comparison of these studies is compromised, however, because of differences 173 

between studies in terms of vaccine types, definition of vaccination status (e.g., time elapsed since 174 

vaccination or dosage) (S5 Table), vaccination coverage among contacts, characteristics of the study 175 

population, duration of follow-up, diagnostic procedures and tools, location, magnitude of the pandemic, 176 

and circulating variants. 177 

Figure 4 summarizes 9 studies [24, 26, 34, 38, 43, 48, 56, 62, 63] reporting household SARs by 178 

contact vaccination status regardless of index case vaccination status, eight of which were at low risk of 179 

bias and two were moderate. Overall estimated mean SAR was 33.8% (95%CI, 28.0%-40.2%) to 180 

unvaccinated contacts (9 studies) [24, 26, 34, 38, 43, 48, 56, 62, 63], 23.7% (95%CI, 19.1%-28.9%) to 181 

partially vaccinated contacts (6 studies) [24, 38, 43, 48, 56, 63], and 14.1% (95%CI, 10.6%-18.6%) to 182 

fully vaccinated contacts (9 studies) [24, 26, 34, 38, 43, 48, 56, 62, 63]. In the 9 paired studies, estimated 183 

mean household SARs were significantly higher to unvaccinated contacts than to fully vaccinated 184 

contacts (P<0.001). For 6 paired studies [24, 38, 43, 48, 56, 63], SARs were significantly higher to 185 

unvaccinated contacts (33.1%, 95%CI, 27.8%-38.8%) than to partially vaccinated contacts (P=0.020), but 186 

SARs were not significantly different to partially vaccinated contacts than to fully vaccinated contacts 187 
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(16.6%, 95%CI, 11.9%-22.9%). SARs were consistent when restricting to only unvaccinated index cases 188 

(4 studies [24, 26, 48, 62]) (S7 Figure). When restricting to 4 studies [43, 48, 62, 63] that targeted Delta, 189 

SARs were also significantly higher to unvaccinated contacts (24.4%, 95%CI, 19.3%-30.4%) than to fully 190 

vaccinated contacts (14.3%, 95%CI, 9.3%-21.3%) (P=0.027). We also estimated vaccine effectiveness 191 

based on the SARs (Table 1).  192 

Next, we examined SARs by vaccine type and index case vaccination status regardless of 193 

vaccination status of household contacts. SARs were included in 2 studies [26, 39] for BNT162b2 and the 194 

mean estimated SAR from fully vaccinated index cases was 8.3% (95%CI, 5.6%-12.1%) compared to 195 

35.9% from unvaccinated index cases (95%CI, 34.1%-37.6%) (S8 Figure).  196 

We also examined SARs by vaccine type and contact vaccination status regardless of index case 197 

vaccination status (3 studies [24, 38, 56]). Mean estimated SAR to household contacts fully vaccinated 198 

with Ad26.COV2.S (1 dose) (42.7%, 95% CI: 13.6%-77.9%) (P=0.005) or BNT162b2 (15.8%, 95%CI, 199 

15.0%-16.7%) (P<0.001) was significantly higher than to contacts fully vaccinated with mRNA-1273 (2 200 

doses) (6.2%, 95% CI: 2.8%-13.0%) (S9 Figure). Additionally, mean estimated SAR was higher to 201 

contacts partially vaccinated with ChAdOx1-S (29.5%, 95% CI: 24.0%-35.7%) than contacts partially 202 

vaccinated with mRNA-1273 (17.5%, 95%CI, 13.7%-22.3%) (P=0.008). There was no significant 203 

difference in SAR to contacts fully vaccinated for ChAdOx1-S and BNT162b2, Ad26.COV2.S, or 204 

mRNA-1273; or to contacts partially vaccinated for BNT162b2 and mRNA-1273or ChAdOx1-S.  205 

 206 

Discussion 207 

We aggregated household studies to examine how variants of concern and vaccination affected 208 

household transmission rates of SARS-CoV-2. Household SARs from fully vaccinated index cases were 209 

lower than from unvaccinated index cases. Fully and partially vaccinated household contacts were less 210 

susceptible to SARS-CoV-2 infection than unvaccinated contacts. SARs for Delta and Alpha were 211 

significantly higher than estimates for the original wild-type variant. 212 
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Several individual studies included in this analysis reported that full vaccination of index cases 213 

significantly reduced the risk of transmission to household contacts [24, 34]. Conversely, other studies 214 

included in this analysis reported that vaccination status of the index case was not associated with 215 

household contact infection [43, 48]. A meta-analysis allows us to aggregate all the evidence of index 216 

case vaccination status from multiple studies and control for differences between the studies. We found 217 

lower transmission to household contacts from fully vaccinated index cases than from unvaccinated index 218 

cases, but not from partially vaccinated index cases. An observational cohort study from England which 219 

included contacts outside the household also reported that two doses of BNT162b2 or ChAdOx1 reduced 220 

onward transmission of Delta, but by less than Alpha, and the impact of vaccination against onward 221 

transmission waned over time [66]. Our estimate for ���,� of 56.6% was within the 41%-79% range 222 

reported for ��� from a modeling study that used household data from Israel before Delta became 223 

widespread [67]. Potential mechanisms for reduced infectiousness following vaccination include 224 

decreases in the respiratory tract viral load and severity of symptoms [68]. 225 

Fully vaccinated and partially vaccinated contacts had significantly lower SARs than 226 

unvaccinated contacts. Other observational studies demonstrated reduced susceptibility to infection 227 

among high risk or household contacts vaccinated with BNT162b2 or ChAdOx1 in Scotland [69], 228 

BNT162b2 in Sweden [70], and BNT162b2 or mRNA-1273 in Belgium [71]. Studies have reported that 229 

full vaccination with mRNA vaccines or ChAdOx1 effectively prevent infection against the original wild-230 

type, Alpha, and Beta variants, but are less protective against infection for Delta [72, 73]. Our estimates 231 

of ���,� (70.3%, 95%CI, 59.3%-78.4%) and ���,� (86.8%, 95%CI, 76.7%-92.5%) were slightly lower 232 

than the age-adjusted ��� (80.5%, 95%CI, 78.9%-82.1%) and ��� (88.5%, 95%CI, 82.3%-94.8%) 233 

reported by Prunas et al [67]. Myriad factors preclude our ability to make direct comparisons of vaccine 234 

effectiveness across studies including differences in the study population (e.g., age, comorbidities, 235 

serostatus), viral characteristics, vaccine type, time period defining vaccination status, intensity of the 236 

epidemic, community behavior, and use of nonpharmaceutical interventions (masks, social distancing) 237 
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[74]. For example, in this analysis Singanayagam et al. [48] included households of any size with 238 

contacts ≥5 years, whereas Gazit et al. [26] restricted to households with only one contact other than the 239 

index case. Moreover, Ng et al. in Singapore reported that all identified close contacts were placed under 240 

a legally-binding quarantine for 14 days during which they were not allowed to leave their homes [43], 241 

whereas contacts in other studies may have had a higher risk of infection outside the household. 242 

With the addition of 49 studies since our last review [1], we observed higher SARs in 2021 than 243 

earlier in the pandemic. This pattern may be attributed in part to the emergence of more contagious 244 

variants. SAR estimates for Alpha (38.0%) and Delta (30.8%) variants were both higher than the overall 245 

SAR previously reported (18.9%) for study periods earlier in the pandemic when the wild-type variant 246 

was prevalent [1]. Public Health England (PHE), which tracks SARs for variants of concern and variants 247 

of interest regardless of vaccination status for index cases and household contacts, found SARs similar for 248 

Alpha (10.2%, 95%CI, 10.1%-10.3%) and Delta (10.4%, 95%CI, 10.4%-10.5%) variants [75]. They note, 249 

however, that direct comparisons between variants are not valid as vaccination levels and social 250 

restrictions in England have varied over this period. Similarly, SARs for Delta and Alpha were not 251 

significantly different in this study even when restricting to unvaccinated contacts only, which may be 252 

partially attributed to an increase in population immunity consequent to infection. A prospective cohort 253 

study [22] and case-control study [76] in England demonstrated increased household transmission for 254 

Delta compared to Alpha. Increased transmissibility may be attributed to higher viral loads, shorter 255 

incubation periods, and mutations in the spike glycoprotein of the virus, which may confer immune 256 

escape potential [77]. Delta infections produced more viral RNA copies per mL than Alpha infections 257 

[78], its in vitro replication rate is higher than Alpha [79], and its spike protein binds more efficiently to 258 

the host cell entry receptor ACE2 protein [80]. 259 

There was large heterogeneity in SARs over time which may be attributed to variations in study 260 

methods, environmental factors, and contact patterns. Comparisons of SARs by vaccination status 261 

between studies were also hindered by differences between studies and there were few studies 262 

disaggregating SARs by both vaccination status of the index cases and contacts. The studies included in 263 
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this review are from contact tracing investigations which are more likely to identify symptomatic index 264 

cases than asymptomatic individuals, which could inflate the crude SAR. This may also underestimate the 265 

reduction in transmission from vaccination for people infected with Delta [81]. Our analyses by vaccine 266 

type and Beta variant were limited to three studies. There was insufficient data to determine vaccine 267 

effectiveness for specific subgroups (e.g., by age group) and whether that varied by variant. 268 

Household contacts exposed to Delta or Alpha variants are at increased risk of infection 269 

compared to the original wild-type variant from Wuhan. Vaccination was demonstrated to reduce 270 

susceptibility to infection and infectiousness. The household remains an important venue of transmission 271 

for SARS-CoV-2. Other public health measures such as hygiene, increased testing, isolation, and 272 

improved ventilation may help limit its spread. Preliminary analyses from PHE demonstrate increased 273 

odds of household transmission from Omicron index cases than from Delta index cases, adjusting for 274 

index case vaccination status and other factors [82]. A study from Denmark reported higher transmission 275 

rates for Omicron than Delta for fully vaccinated individuals but not unvaccinated individuals [61]. The 276 

transmissibility and virulence of Omicron is only now being elucidated and other variants are likely to 277 

emerge.  278 
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Figure Legends 499 

 500 

Figure 1. Household secondary attack rates over time (by study midpoint), 126 studies 501 

(unvaccinated index cases, unvaccinated contacts). Restricted to laboratory-confirmed results only. 502 

The blue line is a loess smoothing line and bands are 95% confidence intervals. Bicolored points 503 

represent studies with 2 predominant variants. 504 

Figure 2. Household secondary attack rates for Alpha (B.1.1.7), Delta (B.1.617.2), and Beta 505 

(B.1.351) variants.  506 

Figure 3. Household secondary attack rates by index case vaccination status. All contacts are 507 

included regardless of vaccination status. *For Harris et al., most of the vaccinated index cases (93%) had 508 

received only the first dose of vaccine and secondary attack rates were not disaggregated by dose. 509 

Figure 4. Household secondary attack rates by contact vaccination status. All index cases are 510 

included regardless of vaccination status.  511 
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Table 1. Estimated vaccine effectiveness (95%CI) estimates from 
household secondary attack rates. 
Vaccine 
effectiveness Full Vaccination Partial Vaccination 
���,� 56.6% (28.7%-73.6%) 27.5% (-6.4%-50.7%) 
���,� 70.3% (59.3%-78.4%) 43.9% (21.8%-59.7%) 
���,� 86.8% (76.7%-92.5%) 59.9% (34.4%-75.5%) 
���,�: vaccine effectiveness for infectiousness based on the 
transmission probability �; ���,�: vaccine effectiveness for 
susceptibility; ���,�: total vaccine effectiveness 
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0.62 [0.40, 0.82]

0.57 [0.19, 0.92]

0.49 [0.32, 0.65]

0.45 [0.28, 0.63]

0.40 [0.34, 0.46]

0.39 [0.30, 0.47]

0.37 [0.35, 0.39]

0.37 [0.27, 0.47]

0.25 [0.01, 0.62]

0.63 [0.53, 0.74]

0.52 [0.41, 0.63]

0.46 [0.43, 0.48]

0.35 [0.21, 0.50]

0.32 [0.27, 0.37]

0.31 [0.10, 0.56]

0.26 [0.20, 0.32]

0.24 [0.13, 0.37]

0.22 [0.20, 0.25]

0.22 [0.16, 0.28]

0.21 [0.21, 0.22]

0.15 [0.14, 0.16]

0.28 [0.12, 0.47]

0.22 [0.18, 0.27]

0.20 [0.00, 0.68]

Subgroup Estimate 0.380 (0.360, 0.400)

Subgroup Estimate 0.308 (0.235, 0.393)

Subgroup Estimate 0.225 (0.186, 0.268)

Author, Location Infected Total Estimates SAR (95% CI)

Delta (B.1.617.2)

Alpha (B.1.1.7)

Beta (B.1.351)
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0.31 [0.31, 0.31]
0.29 [0.27, 0.31]
0.11 [0.09, 0.14]

0.18 [0.17, 0.19]
0.08 [0.06, 0.10]
0.12 [0.11, 0.14]

0.36 [0.34, 0.37]
0.08 [0.05, 0.11]

0.10 [0.10, 0.10]
0.06 [0.06, 0.07]

0.41 [0.37, 0.45]
0.19 [0.08, 0.32]

0.55 [0.33, 0.75]
0.22 [0.01, 0.56]

0.23 [0.20, 0.27]
0.21 [0.11, 0.32]
0.21 [0.15, 0.28]

0.23 [0.15, 0.32]
0.37 [0.22, 0.54]
0.25 [0.15, 0.36]

Unvaccinated Estimate 0.266 (0.187, 0.364)

Partially Vaccinated Estimate 0.162 (0.083, 0.294)

Fully Vaccinated Estimate 0.144 (0.105, 0.194)

Author, Location Infected Total Estimates SAR (95% CI)

Singanayagam et al., U.K.

Ng et al., Singapore

Meyer et al., Germany

Layan et al., Israel

Harris et al., England, U.K.

Gazit et al., Israel

De Gier et al.2, Netherlands

De Gier et al.1, Netherlands
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0.35 [0.35, 0.35]
0.30 [0.28, 0.32]
0.11 [0.10, 0.12]

0.21 [0.19, 0.22]
0.11 [0.10, 0.12]

0.37 [0.36, 0.39]
0.08 [0.05, 0.10]

0.44 [0.40, 0.48]
0.16 [0.10, 0.23]

0.44 [0.43, 0.45]
0.23 [0.21, 0.24]
0.17 [0.16, 0.18]

0.26 [0.22, 0.30]
0.19 [0.11, 0.28]
0.11 [0.06, 0.17]

0.33 [0.13, 0.57]
0.13 [0.00, 0.36]
0.32 [0.18, 0.47]

0.37 [0.23, 0.53]
0.18 [0.07, 0.32]
0.25 [0.18, 0.33]

0.28 [0.09, 0.51]
0.25 [0.08, 0.47]
0.12 [0.00, 0.46]

Unvaccinated Estimate 0.338 (0.280, 0.402)

Partially Vaccinated Estimate 0.237 (0.191, 0.289)

Fully Vaccinated Estimate 0.141 (0.106, 0.186)

Author, Location Infected Total Estimates SAR (95% CI)

Yi et al., Jeju, South Korea

Singanayagam et al., U.K.

Sachdev et al., San Francisco, USA

Ng et al., Singapore

Martínez−Baz et al., Navarre, Spain

Layan et al., Israel

Gazit et al., Israel

De Gier et al.2, Netherlands

De Gier et al.1, Netherlands
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